• Writing output data to a file in C programming. >> endobj 243 0 obj <>stream

• Numerical solution of differential equations using the Runge-Kutta method.

path. 0000001815 00000 n %:��DA�8�J #2LØw"�Q">� �hh.KM@�W��"����0�@1�1\G�0��YD]�d2�Ѡ��5�\$��!�k2��׆"V�s9��hd�x�E� ��9����+���b��⣯\P +zcs��D+Į��%P�����9����k2%����da��]'8�R7h�Po�a؂��azPo�d;����C���b��eNc��%لJfy����Cč�҈Q'p�.���2���*����N�%(�Z�� �f��1֨������.

Applets may be accessed from Web b\ rowser.) 0000052524 00000 n 0000073600 00000 n K ?�&��P5ԁ�o��YN��u���&�����n�˓�L��{��FE��k G;���k����%مz�9X����`��@*G�Xa�5�Q��8c�>b:����R���3��������D� ����� %�3u/�

h��xP���@ۿ2�j��AͰ�A���Pkm����?��A[m-l������#��A���Y�7t��ה٘����g�

0000024115 00000 n The kinetic energy of the pendulum bob is given by 1 2 mv2. 0000003852 00000 n 0000040752 00000 n /Type /XObject

0000060102 00000 n 0000116751 00000 n trailer 0000003698 00000 n 0000028487 00000 n

xref /Filter /FlateDecode �7V�-�X �h�l���"� ���r�1���#��K�Ar�e�\�j�����~�'3�c�����HA ���1dx��¥���h�b�8�M�k�\$�&1�4. 0000140921 00000 n We’ll consider the case where the generalized force, Q, models a …

Derivation of the equation of motion of the simple pendulum with a linear drag force is trivial, however, we present it here for completeness of the discussion. 0000004825 00000 n 0000063952 00000 n "6�`iczLx]��^S�T�c>��h6��k9��9��R1� F��\$n�2� �֑��i��6��T6�`4�"�4^F�Fʆ`n:7FA�[�P��HP��*����RT5x-W��j1�ێ�|P* (@9�#h�6@P8�7A#(�2�`�6��2�h�ʒ��:�pr�����(�4��H�4��pu If we suspend a mass at the end of a piece of string, we have a simple pendulum. 0000028930 00000 n

0000005694 00000 n 0000044581 00000 n 0000062403 00000 n 3�G�p��EA�(�l`.�(ԊP�C7� ��t�"7�Њq�8�q>����(0�7��k���R-[��P�=�O�B!Q���~�W�(E c���VkT 0000077429 00000 n • Using GNUPLOT to create graphs from datafiles.

0000025710 00000 n 1135 0 obj <> endobj 0000114225 00000 n x�bb*e`b``Ń3� ���ţ�1�� WG. h�bbd```b``��� �ID2׃H�C`�o`� D���s��\���`�S`�#`�X0{#������ 2m���\$cր��/ lg� �sG����H�y`6��P~�][A��X\Lڀt�t��r ��H����� �G�^��(�B�g`�r � ��& The variables we consider are mass, length of the pendulum, and angle of initial dislocation. 2.1 The Simple Pendulum . Square the values of the period measured for each length of the pendulum and record /Height 540

0000058703 00000 n endstream endobj 585 0 obj[1/hyphen 2/space 3/space] endobj 586 0 obj<>stream 0000003306 00000 n 0000003177 00000 n

<]>>

Printer Friendly Version: Simple pendulums are sometimes used as an example of simple harmonic motion, SHM, since their motion is periodic.

%PDF-1.4

0000024201 00000 n /MediaBox [0 0 612 792]

0000107332 00000 n 0000038132 00000 n 1135 74 ���5���Ze�P��O�Þ�

0000075763 00000 n 1 0 obj [ /CalRGB << /WhitePoint [ 0.9505 1 1.089 ] /Gamma [ 1.8 1.8 1.8 ] /Matrix [ 0.4497 0.2446 0.0252 0.3163 0.672 0.1412 0.1845 0.0833 0.9227 ] >> ] endobj 2 0 obj << /CreationDate (D:19960402160521) /Producer (Acrobat Distiller 2.1 for Power Macintosh) /Keywords (periodic motion, phase portrait, separatrix) /Subject (The simple plane pendulum) /Author (Mark Sutherland, \251FUN@LEARNING.COM) /Title (PENDULUM.PDF) /ModDate (D:19960613111109) >> endobj 3 0 obj << /Type /Page /Parent 28 0 R /Resources 23 0 R /Contents 22 0 R /Annots [ 19 0 R 10 0 R 12 0 R 14 0 R 16 0 R 18 0 R 9 1 R ] /Rotate 270 /Thumb 79 0 R >> endobj 4 0 obj << /Name /T1 /Type /Font /Subtype /Type3 /FontBBox [ 0 0 16 16 ] /FontMatrix [ 0.125 0 0 -0.125 0 0 ] /FirstChar 48 /LastChar 49 /Encoding 5 0 R /CharProcs 6 0 R /Widths [ 16 16 ] >> endobj 5 0 obj << /Type /Encoding /Differences [ 48 /zero /one ] >> endobj 6 0 obj << /zero 7 0 R /one 8 0 R >> endobj 7 0 obj << /Length 78 /Filter /LZWDecode >> stream 0000038815 00000 n 0000027956 00000 n 0000028375 00000 n

/Filter /FlateDecode sK\$���"������"�fk�ɊU�B �m�#�o���+"���p0A �9�l�]W'������k�* �F3(���a�& tNt���H-ٸ�b�G(Ը=FgY�1�<. The period, T, of an object in simple harmonic motion is defined as the time for one complete cycle.

%PDF-1.4 %���� 3 0 obj << 0000117118 00000 n

657 0 obj<>stream

They also fit the criteria that the bob's velocity is maximum as it passes through equilibrium and its acceleration is minimal while at each endpoint. If we suspend a mass at the end of a piece of string, we have a simple pendulum. 576 0 obj <> endobj x���xSu���v�Yf�_��A.Q�Eq(+#:P!.�@u\��%:Z'����*A��eȎA�+eG#����C,�ъ)h(���[�mR�6�y����CC�����'��;uu �+ t���t���eEQEu| ��� ��(���� ��(�"o�7(��(�"o�7(��(��Aޠ(��(�y��(��(�y��(���� ��(�"o�7(��(�"o�7(��(��Aޠ(��(����(��(�y��(���� ��(���� ��(�"o�7(��(��Aޠ(��(��Aޠ(��(�y��(��(�EQEQ� �EQE�7�EQE�7�EQE� oPEQy��AQEQy��AQEQ� �EQEQ� ��(���� ��(�"o�7(��(�"o�7(��(��Aޠ(��(�y��(��(�y��(��� %=== t�S�"ط���q � ��vuѢE�@_ @\��}�����f( � ��g��:u�G}�P � �OAA�ʕ+�� ������ǎ�8 � ��3�f4 � ��?ˊB�x��� �� ��mW�y��T�h � �o�ZYY٣G��'O2 } 1�?N-����P�/ �6l���� } q�t:���˄� } 1�o,�2eʮ]��� ����Ǆ� } �ޮ2�"@_ @����������� b(�8�`����ӟ�� �*� �*� �\��Ƃn����_gd@_� +����i��ŋ32�/� ��v� � �]�cBE�� �T��Ԃ��~��Gap@_� ?

If all the mass is assumed to be concentrated at a point, we obtain the idealized simple pendulum.

H�����F"k��.�Po��]R\$����ь�f��I�����'��g�Ed�N��a~�a���f��C��L���~�Z|pI�:`��ɢ7)�{���O�|��� 0000061765 00000 n �ph�f3 ��q �g�ab��fF08Ђ)㦘���%5B��c&�e�� �F�� B�i���E�L�m�� �y^+\$G��"�\$�DC��� \$� ���h�Ngi��t "�� � endstream endobj 8 0 obj << /Length 78 /Filter /LZWDecode >> stream

0000141860 00000 n h�b```f``����� ��A��X��, 8z1p).`��yI�>�\˷�@��g�D���S��{E��Z�gZjrLpZ|.P�׆5s&8O�. 0000062823 00000 n +�\��j�s˶���s�'��&I�Լ�]M�������U���]���D���9�g��tL)Qf���B���a� example is a simple pendulum. 0000072853 00000 n

0000061263 00000 n You may assume that you are measuring from the lowest point. 0000027725 00000 n Figure 1(b) shows a simple pendulum with a bob of mass m and a total length L. The total drag force on the string and that on the bob of the pendulum are shown by F s and F b, respectively. 0000134609 00000 n 0000060717 00000 n 0000063493 00000 n FIGURE 2.1 The Simple Pendulum The Lagrangian derivation (e.g, [35]) of the equations of motion of the simple pen­ dulum yields: Iθ¨(t) + mgl sin θ(t) = Q, where I is the moment of inertia, and I = ml2 for the simple pendulum. 0 0000054161 00000 n �+�;3u�*J:�Xo���dTcH��hJ����j( %;:ВP���YZ��!��R@�d�(�,ˀJ! It was Galileo who first observed that the time 0000063798 00000 n x�b```a`�x�������A�؀�,S8�42�1��i�v�Sس�'CS�����C�Hl|"�J�-F7s�����Ţ1%t~�ޖL�e�/��w��9dJ���27�*e������Y�V��p�P�U��G�D8u:=]u}M������m+�^n�}{wk�ӇL��n��yM�ln;s?jm�Ӯ E�������Ȼ�#�#�����nN�"%;��� ۛ�h{P#�*���˾���ݚ�7k� E��)7����ۙd��R)�yq�U+��%^3��pj�ܹ�����b> `�3 �W��m ,5��~�}��\$�� t�ap� 0000037759 00000 n

/ColorSpace /DeviceRGB 0000003036 00000 n 0000022819 00000 n Here, the to and fro motion represents a periodic motion used in times past to control the motion of grandfather and cuckoo clocks. 0000135632 00000 n %%EOF

0000064617 00000 n %PDF-1.4 %���� 0000002860 00000 n

11. Figure 1(b) shows a simple pendulum with a bob of mass m and a total length L. The total drag force on the string and that on the bob of the pendulum are shown by F s and F b, respectively. 0000022176 00000 n 0000137110 00000 n 0000045066 00000 n

��� #�rs����������9���l���_b@��Y�A׿2��n���Wx���_ 0000062556 00000 n xڍVˮ�6��+�+D_��� R���B�d[�,�Jt�������ܠ7�ϼ��f�y�N�L9�Uƶ� If the energy is just equal to the critical value, there will be two possibilities. 0000058251 00000 n A pendulum is a rigid body suspended from a ﬁxed point (hinge) which is oﬀset with respect to the body’s center of mass. 0000063838 00000 n 0000063159 00000 n

0000053398 00000 n 0000150810 00000 n startxref The equation of motion (Newton's second law) for the pendulum is . 0000020431 00000 n

%PDF-1.7 %���� 0000107026 00000 n 0000030365 00000 n 0000107889 00000 n 0000003521 00000 n 0000065293 00000 n

x�b```b`��g`g`�� Ā B@1v� � F���.p�Q��Z�|^�k�O��3�9����,���@Pt�yx�h����͏[Xxxzf��������֨�+T/��l7�g���V��F[� ��l�7�(hhl���Us3�����O��]�7�T��~��>b2 0000063672 00000 n �\$d#��QC9���� � �@��d,����+��)d��Y��MM��0��#��Ɠ�43[�fZ�Uq%���nᴆ��8B�8Bɻ�f�5@��A煐Pc 0000045972 00000 n 0000074943 00000 n 0000001975 00000 n

0000045325 00000 n

/M (D:19960613111042) /T (Note) >> endobj 10 0 obj << /A 92 0 R /Type /Annot /Subtype /Link /Rect [ 174 448 191 585 ] /Border [ 0 0 0 ] >> endobj 12 0 obj << /A 94 0 R /Type /Annot /Subtype /Link /Rect [ 155 607 169 679 ] /Border [ 0 0 0 ] >> endobj 14 0 obj << /A 96 0 R /Type /Annot /Subtype /Link /Rect [ 129 538 146 679 ] /Border [ 0 0 0 ] >> endobj 16 0 obj << /A 98 0 R /Type /Annot /Subtype /Link /Rect [ 107 571 123 679 ] /Border [ 0 0 0 ] >> endobj 18 0 obj << /A 100 0 R /Type /Annot /Subtype /Link /Rect [ 376 185 389 232 ] /Border [ 0 0 0 ] >> endobj 19 0 obj << /Dest /aaa /Type /Annot /Subtype /Link /Rect [ 222 283 238 386 ] /Border [ 0 0 0 ] >> endobj 22 0 obj << /Length 3647 /Filter /LZWDecode >> stream